American Chemical Society
Browse

BNB-Doped Phenalenyls: Modular Synthesis, Optoelectronic Properties, and One-Electron Reduction

Posted on 2020-06-15 - 15:11
A highly modular synthesis of BNB- and BOB-doped phenalenyls is presented. Treatment of the 1,8-naphthalenediyl-bridged boronic acid anhydride 1 with LiAlH4/Me3SiCl afforded the corresponding 1,8-naphthalenediyl-supported diborane(6) 2, which served as the starting material for all subsequent transformations. Upon addition of MesMgBr/Me3SiCl, 2 was readily converted to the tetraorganyl diborane(6) 5. The further heteroatoms were finally introduced through the reaction of 2 with (Me3Si)2NR′ or 5 with H2NR′ or H2O (R′ = H, Me, p-Tol). A helically twisted, fully BNB-embedded PAH 11 was prepared by combining 2 with a dibrominated m-terphenylamine, followed by a Grignard-mediated double ring-closure reaction. All compounds devoid of B–H bonds show favorable optoelectronic properties, such as luminescence and reversible reduction behavior. In the case of the BNB-phenalenyl 7 (BMes, NMe), the radical-anion salt K­[7] was generated through chemical reduction with K metal and characterized by EPR spectroscopy. K­[7] is not long-term stable in a THF/c-hexane solution, but abstracts an H atom with formation of the diamagnetic BNB-doped 1H-phenalene K­[7H].

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?