American Chemical Society
Browse

Anionic Surfactant–Tailored Interfacial Microenvironment for Boosting Electrochemical CO2 Reduction

Posted on 2024-07-10 - 20:03
Both the catalyst and electrolyte deeply impact the performance of the carbon dioxide reduction reaction (CO2RR). It remains a challenge to design the electrolyte compositions for promoting the CO2RR. Here, typical anionic surfactants, dodecylphosphonic acid (DDPA) and its analogues, are employed as electrolyte additives to tune the catalysis interface where the CO2RR occurs. Surprisingly, the anionic surfactant–tailored interfacial microenvironment enables a set of typical commercial catalysts for the CO2RR to deliver a significantly enhanced selectivity of carbon products in both neutral and acidic electrolytes. Mechanistic studies disclose that the DDPA addition restructures the interfacial hydrogen-bond environment via increasing the weak H-bonded water, thus promoting the CO2 protonation to CO. Specifically, in an H-type cell, the Faradaic efficiency of CO increases from 70 to 98% at −1.0 V versus the reversible hydrogen electrode. Furthermore, in a flow cell, the DDPA-containing electrolyte maintains over 90% FECO from 50–400 mA cm–2. Additionally, this electrolyte modulation strategy can be extended to acidic CO2RR with a pH of 1.5–3.5.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?