American Chemical Society
Browse

A Mixed Quantum Chemistry/Machine Learning Approach for the Fast and Accurate Prediction of Biochemical Redox Potentials and Its Large-Scale Application to 315 000 Redox Reactions

Version 3 2019-07-24, 07:16
Version 2 2019-06-07, 20:31
Version 1 2019-06-07, 20:03
Posted on 2019-07-24 - 07:16
A quantitative understanding of the thermodynamics of biochemical reactions is essential for accurately modeling metabolism. The group contribution method (GCM) is one of the most widely used approaches to estimate standard Gibbs energies and redox potentials of reactions for which no experimental measurements exist. Previous work has shown that quantum chemical predictions of biochemical thermodynamics are a promising approach to overcome the limitations of GCM. However, the quantum chemistry approach is significantly more expensive. Here, we use a combination of quantum chemistry and machine learning to obtain a fast and accurate method for predicting the thermodynamics of biochemical redox reactions. We focus on predicting the redox potentials of carbonyl functional group reductions to alcohols and amines, two of the most ubiquitous carbon redox transformations in biology. Our method relies on semiempirical quantum chemistry calculations calibrated with Gaussian process (GP) regression against available experimental data and results in higher predictive power than the GCM at low computational cost. Direct calibration of GCM and fingerprint-based predictions (without quantum chemistry) with GP regression also results in significant improvements in prediction accuracy, demonstrating the versatility of the approach. We design and implement a network expansion algorithm that iteratively reduces and oxidizes a set of natural seed metabolites and demonstrate the high-throughput applicability of our method by predicting the standard potentials of more than 315 000 redox reactions involving approximately 70 000 compounds. Additionally, we developed a novel fingerprint-based framework for detecting molecular environment motifs that are enriched or depleted across different regions of the redox potential landscape. We provide open access to all source code and data generated.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?