pH-Responsive Vesicles Based on a Hydrolytically Self-Cross-Linkable Copolymer

2005-09-21T00:00:00Z (GMT) by Jianzhong Du Steven P. Armes
A new type of shape-persistent, pH-responsive vesicle was prepared by the self-assembly of a novel poly(ethylene oxide)-block-poly[2-(diethylamino)ethyl methacrylate-stat-3-(trimethoxysilyl)propyl methacrylate], PEO-b-P(DEA-stat-TMSPMA), copolymer. Vesicles were formed spontaneously in aqueous THF solution, with the hydrophilic PEO chains forming the corona and the pH-sensitive P(DEA-stat-TMSPMA) blocks being located in the membrane walls. Hydrolytic cross-linking within the hydrophobic membrane walls fixed the vesicle morphology. The resulting colloidally stable vesicles were characterized by 1H NMR, transmission electron microscopy (TEM), dynamic laser light scattering (DLS), and stopped-flow fluorescence experiments. The latter technique indicated that the permeability of the vesicle walls was sensitive to the pH of the aqueous solution, as expected. Gold-decorated vesicles were obtained by in situ reduction of AuCl4- anions to produce gold nanoparticles within the vesicle walls. (Yellow, hydrophilic PEO; green, pH-responsive DEA residues; blue, hydrolytically self-cross-linkable TMSPMA residues.)