posted on 2015-12-24, 20:36authored byOlga Kononova, Yaroslav Kholodov, Kelly E. Theisen, Kenneth A. Marx, Ruxandra I. Dima, Fazly I. Ataullakhanov, Ekaterina L. Grishchuk, Valeri Barsegov
Microtubules,
the primary components of the chromosome segregation
machinery, are stabilized by longitudinal and lateral noncovalent
bonds between the tubulin subunits. However, the thermodynamics of
these bonds and the microtubule physicochemical properties are poorly
understood. Here, we explore the biomechanics of microtubule polymers
using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close
match between the simulated and experimental force–deformation
spectra enabled us to correlate the microtubule biomechanics with
dynamic structural transitions at the nanoscale. Our mechanical testing
revealed that the compressed MT behaves as a system of rigid elements
interconnected through a network of lateral and longitudinal elastic
bonds. The initial regime of continuous elastic deformation of the
microtubule is followed by the transition regime, during which the
microtubule lattice undergoes discrete structural changes, which include
first the reversible dissociation of lateral bonds followed by irreversible
dissociation of the longitudinal bonds. We have determined the free
energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol)
and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin
bonds. These values in conjunction with the large flexural rigidity
of tubulin protofilaments obtained (18,000–26,000 pN·nm2) support the idea that the disassembling microtubule is capable
of generating a large mechanical force to move chromosomes during
cell division. Our computational modeling offers a comprehensive quantitative
platform to link molecular tubulin characteristics with the physiological
behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration
of biomechanical properties of other cytoskeletal and multiprotein
assemblies.