am1c00697_si_003.mp4 (1.73 MB)
Download file

TiO2@HNTs Robustly Decorated PVDF Membrane Prepared by a Bioinspired Accurate-Deposition Strategy for Complex Corrosive Wastewater Treatment

Download (1.73 MB)
media
posted on 2021-02-24, 20:14 authored by Jingcheng Wu, Yi He, Liang Zhou, Xiangying Yin, Liyun Zhang, Jingyu Chen, Zhenyu Li, Yang Bai
As industrialization has spread all around the world, the problems of water pollution such as offshore oil spill and industrial sewage discharge have spread with it. Although many new separation materials have been successfully developed to deal with this crisis, a large number of water treatment materials only focus on the treatment of classified single water pollutant under mild conditions. It is a great challenge to treat soluble contaminants such as water-soluble dyes and insoluble contaminants, for example, emulsified oils simultaneously in a strong corrosive environment. Herein, in this work, corrosive resistance and multifunctional surface on a commercial polyvinylidene difluoride (PVDF) membrane via a tunicate-inspired gallic acid-assisted accurate-deposition strategy is created. Owing to the titanium–carboxylic coordination bonding and accurate-deposition strategy, the as-prepared membrane exhibits extraordinary stability, facing various harsh environmental challenges and incredibly corrosive situations (e.g., 4 M NaOH, 4 M HCl, and saturated NaCl solution). The robust multifunctional surface also endows commercial PVDF membrane with the ability for in situ separation and adsorption of surfactant-stabilized oil-in-water (corrosive and dyed) emulsions with high adsorption efficiencies up to 99.9%, separation efficiencies above 99.6%, and permeation flux as high as 15,698 ± 211 L/(m2·h·bar). Furthermore, the resultant membrane can be regenerated facilely and rapidly by flushing a small amount of HCl (4 M) or NaOH (4 M), making the corrosive resistance membrane attain a long-term and high-efficiency application for complex dyed wastewater treatment. Therefore, the multifunctional membrane has a broad application prospect in the industrial field.

History