American Chemical Society
Browse

The Throttle Effect in Metal–Organic Frameworks for Distinguishing Water Isotopes

Download (848.7 kB)
media
posted on 2024-11-08, 14:36 authored by Xiao Xiao, Guangyu He, Junbao Ma, Xuejun Cheng, Ruoxu Wang, Hongyu Chen
Metal–organic frameworks (MOFs) have been widely used for separation, but amplifying subtle differences between similar molecules to achieve effective separation remains a great challenge. In this study, we utilize the fluorescent molecule uranine (Ura) to modulate the pores of zeolitic-imidazolate framework 8 (ZIF8), creating an unusual throttle effect. By monitoring fluorescence intensity changes in Ura, the transport diffusion process could be quantified to reveal the diffusion constant of solvents. When we pushed the Ura occupancy to its limit (from 59% to 76% and 98%), the diffusion rate decreases by 2 orders of magnitude. Most importantly, there is a significant dissymmetry between the two-way exchange rates of solvents, and the rates of H2O and D2O became distinguishable. Such unusual throttle effects disappear at low Ura occupancy of 59% and 76%. We believe that the throttle effect with small-molecule loading could provide a universal design principle for MOF-based applications, especially for isotope separation.

History