American Chemical Society
Browse
ja3099867_si_002.avi (175.58 kB)

Steric Pressure between Membrane-Bound Proteins Opposes Lipid Phase Separation

Download (175.58 kB)
media
posted on 2013-01-30, 00:00 authored by Christine S. Scheve, Paul A. Gonzales, Noor Momin, Jeanne C. Stachowiak
Cellular membranes are densely crowded with a diverse population of integral and membrane-associated proteins. In this complex environment, lipid rafts, which are phase-separated membrane domains enriched in cholesterol and saturated lipids, are thought to organize the membrane surface. Specifically, rafts may help to concentrate proteins and lipids locally, enabling cellular processes such as assembly of caveolae, budding of enveloped viruses, and sorting of lipids and proteins in the Golgi. However, the ability of rafts to concentrate protein species has not been quantified experimentally. Here we show that when membrane-bound proteins become densely crowded within liquid-ordered membrane regions, steric pressure arising from collisions between proteins can destabilize lipid phase separations, resulting in a homogeneous distribution of proteins and lipids over the membrane surface. Using a reconstituted system of lipid vesicles and recombinant proteins, we demonstrate that protein–protein steric pressure creates an energetic barrier to the stability of phase-separated membrane domains that increases in significance as the molecular weight of the proteins increases. Comparison with a simple analytical model reveals that domains are destabilized when the steric pressure exceeds the approximate enthalpy of membrane mixing. These results suggest that a subtle balance of free energies governs the stability of phase-separated cellular membranes, providing a new perspective on the role of lipid rafts as concentrators of membrane proteins.

History

Usage metrics

    Journal of the American Chemical Society

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC