ja903479p_si_004.avi (22.48 MB)
Download file

Solution Structures of Lithium Enolates of Cyclopentanone, Cyclohexanone, Acetophenones, and Benzyl Ketones. Triple Ions and Higher Lithiate Complexes

Download (22.48 MB)
media
posted on 19.08.2009, 00:00 by Kristopher J. Kolonko, Margaret M. Biddle, Ilia A. Guzei, Hans J. Reich
Multinuclear NMR spectroscopic studies at low temperature (−110 to −150 °C) revealed that lithium p-fluorophenolate and the lithium enolates of cyclohexanone, cyclopentanone and 4-fluoroacetophenone have tetrameric structures in THF/Et2O and THF/Et2O−HMPA by study of the effects of the addition of HMPA. The Z and E isomers of the lithium enolate of 1,3-bis-(4-fluorophenyl)-2-propanone (5F-Li) show divergent behavior. The Z isomer is completely dimeric in pure diethyl ether, and mostly dimeric in 3:2 THF/ether, where monomer could be detected in small amounts. TMTAN and PMDTA convert Z-5F-Li to a monomeric amine complex, and HMPA converts it partially to monomers, and partially to lithiate species (RO)2Li and (RO)3Li2−. Better characterized solutions of these lithiates were prepared by addition of phosphazenium enolates (using P4-tBu base) to the lithium enolate in 1:1 ratio to form triple ion (RO)2Li P4H+, or 2:1 ratio to form the higher lithiate (RO)3Li2− (P4H+)2) (quadruple ions). The E isomer of 5F-Li is also dimeric in 3:2 THF/Et2O solution, but is not detectably converted to monomer either by PMDTA or HMPA. In contrast to Z-5F-Li, the E isomer is tetrameric in diethyl ether even in the presence of excess HMPA. Thus for the two isomers of 5F six different enolate structures were characterized: tetramer, dimer, CIP-monomer, SIP-monomer, triple ion, and quadruple ion.

History