jp1c07685_si_003.mpg (1.33 MB)
Download fileSoft or Hard? Investigating the Deformation Mechanisms of Au–Pd and Pd Nanocubes under Compression: An Experimental and Molecular Dynamics Study
media
posted on 04.11.2021, 20:15 authored by Juan A. de la Rosa Abad, Alejandra Londoño-Calderon, Eduardo M. Bringa, German J. Soldano, Sergio. A. Paz, Ulises Santiago, Sergio J. Mejía-Rosales, Miguel José Yacamán, Marcelo M. MariscalIn the search for new mechanisms
to improve and control the mechanical
properties of nanostructures, the idea of tuning the strength through
composition is appealing because of the extensive experimental availability
of nanoparticles with segregated configurations, such as core–shell
nanoparticles. However, not much is known about the deformation mechanism
of these types of systems because of the lack of correlation between
theoretical predictions and experimental observations. In this work,
we investigate the atomistic mechanical response of Au–Pd core–shell
and Pd nanocubes under indentation, using molecular dynamics simulations.
These results are compared to experimental observations of in situ
transmission electron microscopy (TEM) nanoindentation on similar
nanoparticles. Our study resolves the nucleation of Shockley partial
dislocations and their propagation in Au–Pd core–shell
and single-crystalline Pd nanocubes. In the latter, Shockley partial
dislocations originate at the cube corners and create stacking faults
that propagate across the nanoparticle, creating the so-called V-shaped
defects. In contrast, in Au–Pd core–shell nanocubes,
nucleation starts at the semicoherent Au–Pd interface, where
a network of misfits acts as dislocation storage, reducing the nanocube’s
strength. We explore the effect of the core size and its function
as a dislocation barrier for nanocubes of smaller sizes. Additionally,
strain hardening was observed as the core size increased and, for
the case of the largest core (Au30Pd70) at strain
values above 20%, where a complex network of different types of dislocations,
including sessile dislocations, is observed. Our results suggest a
clear agreement between simulation and experiments, which points to
a promising field in which combining two or more metals in a core–shell
configuration can be used to tune and control the mechanical properties
at the nanoscale.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
create stacking faultsmolecular dynamics studyatomistic mechanical responseshockley partial dislocationsincluding sessile dislocationsextensive experimental availability30 </ subcore size increasedcrystalline pd nanocubesau – pdcore sizestudy resolvesmechanical propertieslargest corepd nanocubestheoretical predictionsstrain valuesstrain hardeningsmaller sizesshaped defectssegregated configurationspropagate acrosspromising fieldnew mechanismsnanocube ’misfits actsexperimental observationsdislocation storagedislocation barrierdeformation mechanismsdeformation mechanismcube cornerscombining twoclear agreementcalled v20 %,