posted on 2015-12-31, 00:00authored byRyuhei Sato, Shohei Ohkuma, Yasushi Shibuta, Fuyuki Shimojo, Shu Yamaguchi
The proton migration on a cubic ZrO2 (110) surface is
investigated by ab initio molecular dynamics simulation.
H2O molecules form a hydrated multilayer on a ZrO2 surface consisting of terminating H2O adsorbates and
hierarchically hydrogen-bonded H2O layers. A portion of
H2O molecules chemisorbed on zirconium atoms (Zr–OH2) dissociates into H+ and OH–, forming polydentate and monodentate hydroxyls (>OH+ and
Zr–OH–). The coexistence of acid and base
sites (Zr–OH2 and Zr–OH–) in the equilibrium state is confirmed by analyses of both forward
and reverse reactions of H2O dissociation on the ZrO2 surface. Proton hopping from Zr–OH2 to
Zr–OH– occurs by both a direct proton transfer
and a chain protonation reaction via surrounding H2O molecules.
During these processes, Zr–OH2 donates an extra
proton to Zr–OH– directly or via H2O molecules in the multilayers, indicating that the coexistence of
Zr–OH2 and Zr–OH– is a
necessary condition for the proton conduction on the oxide surface
with various basicities.