American Chemical Society
nl402633n_si_007.avi (9.87 MB)

Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries

Download (9.87 MB)
posted on 2013-11-13, 00:00 authored by Meng Gu, Akihiro Kushima, Yuyan Shao, Ji-Guang Zhang, Jun Liu, Nigel D. Browning, Ju Li, Chongmin Wang
Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515−1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.