nn0c10417_si_006.mp4 (15.72 MB)
Download file

Observation and Control of Unidirectional Ballistic Dynamics of Nanoparticles at a Liquid–Gas Interface by 4D Electron Microscopy

Download (15.72 MB)
posted on 18.03.2021, 16:07 authored by Xuewen Fu, Siyu Liu, Bin Chen, Jau Tang, Yimei Zhu
Understanding and controlling the dynamics of active Brownian objects far from equilibrium are fundamentally important for emerging technologies such as artificial micro/nanomotors for drug deliveries and noninvasive microsurgery. However, direct observation and control of unidirectional propulsion of individual nanoscale objects are technically challenging due to the required spatiotemporal resolution. Here, we report in situ visualization and manipulation of unidirectional superfast ballistic dynamics of a single-photon-activated gold nanoparticle (NP) along the liquid–gas interface by four-dimensional electron microscopy (4D EM) at nanometer and nanosecond scales. We observed that, upon repetitive femtosecond laser excitation, the NP at the liquid–gas interface exhibits a continuously superfast unidirectional translation with a linear dependence of its root mean squared velocity (νrms) on either the laser fluence or repetition rate. Under a single femtosecond pulse excitation, the NP exhibits a superfast ballistic translation at the nanosecond time scale. Combined experiment and physical modeling reveals that the superfast unidirectional, ballistic translation is driven by unidirectional random impulsive forces arising from the nanobubbles (NBs) induced by enhanced laser heating as a result of plasmonic excitation, which is controllable by tuning the laser characteristics. This directional plasmonic NB-propulsion mechanism sheds light on the design of light-controllable artificially intelligent micro/nanomotor systems.