posted on 2020-05-07, 09:59authored byJung Park, Sebastian Bauer, Klaus von der Mark, Patrik Schmuki
We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100
nm and show that adhesion, spreading, growth, and differentiation of mesenchymal stem cells are critically dependent on the tube diameter.
A spacing less than 30 nm with a maximum at 15 nm provided an effective length scale for accelerated integrin clustering/focal contact
formation and strongly enhances cellular activities compared to smooth TiO2 surfaces. Cell adhesion and spreading were severely impaired
on nanotube layers with a tube diameter larger than 50 nm, resulting in dramatically reduced cellular activity and a high extent of programmed
cell death. Thus, on a TiO2 nanotube surface, a lateral spacing geometry with openings of 30−50 nm represents a critical borderline for cell
fate.