American Chemical Society
Browse
am0c13594_si_009.mp4 (18.73 MB)

Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation

Download (18.73 MB)
media
posted on 2020-09-29, 20:11 authored by Juanrong Qin, Pingping Feng, Yaru Wang, Xiaolong Du, Botao Song
Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. Owing to its different contraction gradient amplitudes along the thickness direction and the unique physical property of the nanofibrous material, the prepared actuator exhibits excellent shape deformation performance, including superfast response (less than 150 ms), controllable deformation directions, multiple actuation models, multiple dimensional deformation (0D–3D, 1D–3D, 2D–3D, and 3D–3D), large bending curvature (25.3 cm–1), and a repeatability rate of at least 1000. The actuation performance of the nanofibrous actuator is superior to the currently reported actuators. The nanofibers are integrated into layer-by-layer and side-by-side structures to achieve competitive and independent actuation, respectively. The outstanding shape-changing properties of the nanofibrous actuator result in the construction of practical intelligent devices for applications such as amphibious movement, intelligent protection, and cargo transportation. The nanofibrous actuator designed herein exhibits tremendous potential in soft robotics, sensors, and biomedicine.

History