American Chemical Society
Browse
nn6b03939_si_007.avi (1.04 MB)

Morphological Evolution of Electrochemically Plated/Stripped Lithium Microstructures Investigated by Synchrotron X‑ray Phase Contrast Tomography

Download (1.04 MB)
media
posted on 2016-07-27, 00:00 authored by Fu Sun, Lukas Zielke, Henning Markötter, André Hilger, Dong Zhou, Riko Moroni, Roland Zengerle, Simon Thiele, John Banhart, Ingo Manke
Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next-generation battery technologies such as Li–S and Li–O2. Unfortunately, uncontrollable growth of Li microstructures (LmSs, e.g., dendrites, fibers) during electrochemical Li stripping/plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and/or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in-line phase contrast X-ray tomography was employed to investigate the morphological evolution of electrochemically deposited/dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundly.

History

Usage metrics

    ACS Nano

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC