am8b09826_si_005.mpg (3.38 MB)
Download file

Micropatterning of Highly Stretchable Tough Polymer Actuators for Multistage Detection of Acetone Vapors

Download (3.38 MB)
media
posted on 01.08.2018, 00:00 by Jiang Wei, Fushun Wang, Lidong Zhang
Micropatterning of soft polymer actuators is an emerging technique that overcomes many drawbacks of macroscopic patterning to trigger the shape-programmable deformations for various functional applications. We thus report a polymer composite actuator that combines micropatterning with high stretchability and toughness, whereupon it demonstrates shape-programmable deformation, and can be utilized in an electronic device for multistage detection of acetone vapors. The actuator is created by alignment of Fe(0) particles (FePs) into poly­(vinylidene difluoride) (PVDF) matrix in a strong magnetic field, followed by stretching the PVDF/FePs film into necking structure. The necking induces more-directional alignments of FePs and further crystallization of PVDF, so that bringing PVDF/FePs actuator with anisotropic elastic tensors, resulting in controllable shape deformation upon sorption of acetone vapors. Assisted by magnetic field, acetone-driven deformation can be transferred to directional movement by rolling over a substrate. Micropatterned PVDF/FePs actuator is stretchable and tough, with maximum stress reaching 160 MPa at the rupture strain of 100%, making it capable of continuous deformation for several hours, or even longer, depending on the concentration of acetone vapors. This directional reversible fatigueless response is involved in a smart controller that exhibits promising potential for multistage detection of acetone vapors.

History