American Chemical Society
Browse
- No file added yet -

Low-Cost, Acid/Alkaline-Resistant, and Fluorine-Free Superhydrophobic Fabric Coating from Onionlike Carbon Microspheres Converted from Waste Polyethylene Terephthalate

Download (390.65 kB)
media
posted on 2014-03-04, 00:00 authored by Haibo Hu, Lei Gao, Changle Chen, Qianwang Chen
Onionlike carbon microspheres composed of many nanoflakes have been prepared by pyrolyzing waste polyethylene terephthalate in supercritical carbon dioxide at 650 °C for 3 h followed by subsequent vacuum annealing at 1500 °C for 0.5 h. The obtained onionlike carbon microspheres have very high surface roughness and exhibit unique hydrophobic properties. Considering their structural similarities with a lotus leaf, we further developed a low-cost, acid/alkaline-resistant, and fluorine-free superhydrophobic coating strategy on fabrics by employing the onionlike carbon microspheres and polydimethylsiloxane as raw materials. This provides a novel technique to convert waste polyethylene terephthalate to valuable carbon materials. At the same time, we demonstrate a novel application direction of carbon materials by taking advantage of their unique structural properties. The combination of recycling waste solid materials as carbon feedstock for valuable carbon material production, with the generation of highly value-added products such as superhydrophobic fabrics, may provide a feasible solution for sustainable solid waste treatment.

History