American Chemical Society
Browse

Investigation of <i>In Vacuo</i> Atomic Layer Deposition of Ultrathin MgAl<sub>2</sub>O<sub>4</sub> Using Scanning Tunneling Spectroscopy

Download (7.36 MB)
media
posted on 2020-10-14, 19:07 authored by Ryan Goul, Angelo Marshall, Ridwan Sakidja, Judy Z. Wu
Recently, disordered spinel MgAl<sub>2</sub>O<sub>4</sub> as insulating tunnel barriers for perpendicular magnetic tunnel junctions has attracted interest due to their observed high tunneling magnetoresistance (TMR) and excellent voltage response. Motivated by this, we report the first success in the synthesis of ultrathin films (0.33–4.29 nm) of MgAl<sub>2</sub>O<sub>4</sub> using <i>in vacuo</i> atomic layer deposition (ALD) on Fe and Al electrodes. The electronic properties of samples were evaluated using <i>in situ</i> scanning tunneling spectroscopy. Intriguingly, the sequence of the ALD Al<sub>2</sub>O<sub>3</sub> and ALD MgO was found to dramatically impact the electronic structure of the ALD MgAl<sub>2</sub>O<sub>4</sub>, which may be attributed to the different initial adsorption mechanisms of ALD MgO and ALD Al<sub>2</sub>O<sub>3</sub>, as revealed in the molecular dynamics simulation. The optimum sequence for the first unit cell (or supercycle) of MgAl<sub>2</sub>O<sub>4</sub> is two ALD Al<sub>2</sub>O<sub>3</sub> cycles followed by one ALD MgO cycle. At three supercycles (0.99 nm), a much higher conduction band minimum (CBM) of 1.71 eV was observed, in contrast to 1.58 or 1.45 eV, which were observed when beginning the supercycles with 1 cycle of Al<sub>2</sub>O<sub>3</sub> (0.11 nm) followed by 1 cycle of MgO (0.11 nm) or only 1 cycle of MgO, respectively. Decreasing the number of supercycles from 3 (∼0.99 nm) to 1 supercycle (∼0.33 nm) resulted in a monotonic decrease in CBM from 1.71 to 1.49 eV, showing some frustration of growth during earlier atomic layer deposition cycles. Additionally, growth on a Fe layer showed a moderate CBM of 1.25 eV. Nevertheless, the observed CBM in the ultrathin ALD MgAl<sub>2</sub>O<sub>4</sub> greatly exceeds that of thermally oxidized AlO<i><sub>x</sub></i> barriers (∼0.6 eV) and is similar to that of high-quality ALD-grown Al<sub>2</sub>O<sub>3</sub> (∼1.7 eV) and MgO grown with an Al<sub>2</sub>O<sub>3</sub> seed layer (∼1.50 eV) of comparable total thickness in the ultrathin range. The high CBM values are indicative of a low defect concentration in the ultrathin ALD MgAl<sub>2</sub>O<sub>4</sub>, which is supported by a high dielectric constant of 8.85 (comparable to that of the crystalline MgAl<sub>2</sub>O<sub>4</sub> bulk) observed for a 4.3 nm thick ALD MgAl<sub>2</sub>O<sub>4</sub> film capacitor.

History