posted on 2020-10-14, 19:07authored byRyan Goul, Angelo Marshall, Ridwan Sakidja, Judy Z. Wu
Recently, disordered spinel MgAl2O4 as insulating
tunnel barriers for perpendicular magnetic tunnel junctions has attracted
interest due to their observed high tunneling magnetoresistance (TMR)
and excellent voltage response. Motivated by this, we report the first
success in the synthesis of ultrathin films (0.33–4.29 nm)
of MgAl2O4 using in vacuo atomic
layer deposition (ALD) on Fe and Al electrodes. The electronic properties
of samples were evaluated using in situ scanning
tunneling spectroscopy. Intriguingly, the sequence of the ALD Al2O3 and ALD MgO was found to dramatically impact
the electronic structure of the ALD MgAl2O4,
which may be attributed to the different initial adsorption mechanisms
of ALD MgO and ALD Al2O3, as revealed in the
molecular dynamics simulation. The optimum sequence for the first
unit cell (or supercycle) of MgAl2O4 is two
ALD Al2O3 cycles followed by one ALD MgO cycle.
At three supercycles (0.99 nm), a much higher conduction band minimum
(CBM) of 1.71 eV was observed, in contrast to 1.58 or 1.45 eV, which
were observed when beginning the supercycles with 1 cycle of Al2O3 (0.11 nm) followed by 1 cycle of MgO (0.11 nm)
or only 1 cycle of MgO, respectively. Decreasing the number of supercycles
from 3 (∼0.99 nm) to 1 supercycle (∼0.33 nm) resulted
in a monotonic decrease in CBM from 1.71 to 1.49 eV, showing some
frustration of growth during earlier atomic layer deposition cycles.
Additionally, growth on a Fe layer showed a moderate CBM of 1.25 eV.
Nevertheless, the observed CBM in the ultrathin ALD MgAl2O4 greatly exceeds that of thermally oxidized AlOx barriers (∼0.6 eV) and is similar to
that of high-quality ALD-grown Al2O3 (∼1.7
eV) and MgO grown with an Al2O3 seed layer (∼1.50
eV) of comparable total thickness in the ultrathin range. The high
CBM values are indicative of a low defect concentration in the ultrathin
ALD MgAl2O4, which is supported by a high dielectric
constant of 8.85 (comparable to that of the crystalline MgAl2O4 bulk) observed for a 4.3 nm thick ALD MgAl2O4 film capacitor.