ac5b02753_si_001.avi (1.4 MB)
Download file

Infrared Thermal Imaging: A Tool for Simple, Simultaneous, and High-Throughput Enthalpimetric Analysis

Download (1.4 MB)
media
posted on 15.12.2015, 00:00 by Juliano Smanioto Barin, Bruna Tischer, Alessandra Stangherlin Oliveira, Roger Wagner, Adilson Ben Costa, Erico Marlon Moraes Flores
In this work, the feasibility of infrared thermal imaging (ITI) is demonstrated to show its potential application in analytical chemistry. A system of ITI was combined with disposable microplates to perform enthalpimetric analysis, which was selected as an example in order to show the reliability of this method. In this way, the novel thermal infrared enthalpimetry (TIE) method was evaluated in neutralization, precipitation, redox, and complexation reactions, with a multichannel pipet for adding the reagent and an infrared camera to monitor the temperature of multiple reactions (up to 24 simultaneous reactions) in a contactless way. Analytical signals were obtained in only 10 s, and the difference in temperature (ΔT) before and after the reaction was used for the construction of calibration curves by use of reference solutions. More than 10 000 values were considered for the temperature determination for each reaction. The proposed method was applied for determination of the total acidity of vinegar as well as the chloride, iron, and calcium content of pharmaceuticals. The results were compared with those from conventional techniques (titration), and agreement between 96% and 101% was obtained. Sample throughput could even reach thousands of samples analyzed in 1 h. These preliminary results demonstrate the important features of TIE and possible application for other matrices and analytical parameters. The proposed TIE could be spread to cover other enthalpimetric techniques, different reactors (e.g., microfluidic and paper analytical devices), and portable devices, thus reaching other fields of chemistry.

History