am7b12750_si_002.avi (2.19 MB)

Improving Water-Treatment Performance of Zirconium Metal-Organic Framework Membranes by Postsynthetic Defect Healing

Download (2.19 MB)
media
posted on 10.10.2017, 00:00 by Xuerui Wang, Linzhi Zhai, Yuxiang Wang, Ruitong Li, Xuehong Gu, Yi Di Yuan, Yuhong Qian, Zhigang Hu, Dan Zhao
Microporous metal-organic frameworks (MOFs) as building materials for molecular sieving membranes offer unique opportunities to tuning the pore size and chemical property. The recently reported polycrystalline Zr-MOF membranes have greatly expanded their applications from gas separation to water treatment. However, Zr-MOFs are notoriously known for their intrinsic defects caused by ligand/cluster missing, which may greatly affect the molecular sieving property of Zr-MOF membranes. Herein, we present the mitigation of ligand-missing defects in polycrystalline UiO-66­(Zr)-(OH)2 membranes by postsynthetic defect healing (PSDH), which can help in increasing the membranes’ Na+ rejection rate by 74.9%. Intriguingly, the membranes also exhibit excellent hydrothermal stability in aqueous solutions (>600 h). Our study proves the feasibility of PSDH in improving the performance of polycrystalline Zr-MOF membranes for water-treatment applications.

History

Exports