nn9b00144_si_008.avi (4.46 MB)
Download file

Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics

Download (4.46 MB)
media
posted on 21.03.2019, 00:00 authored by Haitao Yang, Bok Seng Yeow, Ting-Hsiang Chang, Kerui Li, Fanfan Fu, Hongliang Ren, Po-Yen Chen
Origami structures have been widely applied in various technologies especially in the fields of soft robotics. Metal oxides (MOs) have recently emerged as unconventional backbone materials for constructing complex origamis with distinct functionalities. However, the MO origami structures reported in the literature were rigid and not deformable, thus limiting their applications to soft robotics. Herein, we reported a graphene oxide (GO)-enabled templating synthesis to produce complex MO origami structures from their paper origami templates with high structural replication. The MO origami structures were next stabilized with elastomer, and the MO–elastomer origamis were able to be adapted into multiple actuation systems (including magnetic fields, shape-memory alloys, and pneumatics) for the fabrication of MO origami robots. Compared with conventional paper origami robots, the MO robots were lightweight, mechanically compliant, fire-retardant, magnetic responsive, and power efficient. We further demonstrated the legendary phoenix-fire-reborn concept in the soft robotics fields: a paper origami robot sacrificed itself in a fire scene and transformed itself into a downsized Al2O3 robot; the Al2O3 robot was able to crawl through a narrow tunnel where the original paper robot was unfit. These MO reconfigurable origamis provide an expanded material library for building soft robotics, and the functionalities of MO robots can be systematically engineered via the intercalation of various metal ions during the GO-enabled synthesis.

History