ja507790z_si_008.avi (712.18 kB)
Download fileFundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules
media
posted on 2015-12-17, 06:27 authored by Henry
D. Herce, Angel E. Garcia, M. Cristina CardosoGuanidinium-rich
molecules, such as cell-penetrating peptides,
efficiently enter living cells in a non-endocytic energy-independent
manner and transport a wide range of cargos, including drugs and biomarkers.
The mechanism by which these highly cationic molecules efficiently
cross the hydrophobic barrier imposed by the plasma membrane remains
a fundamental open question. Here, a combination of computational
results and in vitro and live-cell experimental evidence reveals an
efficient energy-independent translocation mechanism for arginine-rich
molecules. This mechanism unveils the essential role of guanidinium
groups and two universal cell components: fatty acids and the cell
membrane pH gradient. Deprotonated fatty acids in contact with the
cell exterior interact with guanidinium groups, leading to a transient
membrane channel that facilitates the transport of arginine-rich peptides
toward the cell interior. On the cytosolic side, the fatty acids become
protonated, releasing the peptides and resealing the channel. This
fundamental mechanism appears to be universal across cells from different
species and kingdoms.