American Chemical Society
Browse

Fluorescent Molecular Probe for Imaging Hypoxia in 2D Cell Culture Monolayers and 3D Tumor Spheroids: The Cell Membrane Partition Model for Predicting Probe Distribution in a Spheroid

Download (1.92 MB)
media
posted on 2025-03-13, 14:40 authored by Zhumin Zhang, Hailey S. Sanders, Vivienne Dragun, Sara Cole, Bradley D. Smith
Compared to cultured 2D cell monolayers, 3D multicellular spheroids are more realistic tumor models. Nonetheless, spheroids remain under-utilized in preclinical research, in part, because there is a lack of fluorescence sensors that can noninvasively interrogate all the individual cells within a spheroid. This present study describes a deep-red fluorogenic molecular probe for microscopic imaging of cells that contain a high level of nitroreductase enzyme activity as a biomarker of cell hypoxia. A first-generation version of the probe produced “turn-on” fluorescence in a 2D cell monolayer under hypoxic conditions; however, it was not useful in a 3D multicellular tumor spheroid because it only accumulated in the peripheral cells. To guide the probe structural optimization process, an intuitive theoretical membrane partition model was conceived to predict how a dosed probe will distribute within a 3D spheroid. The model identifies three limiting molecular diffusion pathways that are determined by a probe’s membrane partition properties. A lipophilic probe with high membrane affinity rapidly becomes trapped in the membranes of the peripheral cells. In contrast, a very hydrophilic probe molecule with negligible membrane affinity diffuses rapidly through the spheroid intercellular space and rarely enters the cells. However, a probe molecule with intermediate membrane affinity undergoes sequential diffusion in and out of cells and distributes to all the cells within a spheroid. Using the model as a predictive tool, a second-generation fluorescent probe was prepared with a smaller and more hydrophilic molecular structure, and optical sectioning using structured illumination or light sheet microscopy revealed roughly even probe diffusion throughout a tumor spheroid. The membrane permeation model is likely to be broadly applicable for the structural optimization of various classes of molecules and nanoparticles to enable even distribution within a tumor spheroid.

History