am1c02562_si_002.mp4 (5.53 MB)
Download file

Enhanced Triboelectric Nanogenerator Based on Tungsten Disulfide via Thiolated Ligand Conjugation

Download (5.53 MB)
posted on 29.04.2021, 08:44 by Tae In Kim, Ick-Joon Park, Sumin Kang, Taek-Soo Kim, Sung-Yool Choi
Two-dimensional transition-metal dichalcogenides (TMDs) are of particular interest as a new active material for future triboelectric nanogenerators (TENGs) owing to their excellent electrical properties, optical transparency, flexibility, ultrathin thickness, and biocompatibility. Here, we propose a new approach to engineer the surface of TMDs via conjugation with thiolated ligands having different alkane chain lengths and to develop TMD-based TENG devices that exhibit enhanced output performance for the first time. The triboelectric charging behaviors of ligand-conjugated TMDs are successfully investigated, and the electrical output performance of TMD TENGs based on TMD-to-polymer device geometries with a vertical contact-separation mode is dramatically improved, exhibiting an output voltage of 12.2 V and a power density of 138 mW/m2. Furthermore, the ligand-conjugated TMD TENG device exhibits a highly stable operation under repeated contact and separation over 10 000 cycles, as well as high chemical stability, as a result of novel defect engineering via thiolated ligand conjugation. Detailed investigation reveals that the improved performance of the ligand-conjugated TMD TENG device originates from the synergistic effect of defect engineering and the p-type doping effect of TMDs, correlated with the increased electric potential difference between triboelectric layers. These findings provide a new potential of TMDs as a promising building block for the next-generation energy harvesting system.