American Chemical Society
ja2c05735_si_003.mp4 (1.15 MB)

Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution

Download (1.15 MB)
posted on 2022-07-22, 13:04 authored by Pin-Tian Lyu, Qing-Yue Li, Pei Wu, Chao Sun, Bin Kang, Hong-Yuan Chen, Jing-Juan Xu
Energy carrier evolution is crucial for material performance. Ultrafast microscopy has been widely applied to visualize the spatiotemporal evolution of energy carriers. However, direct imaging of a small amount of energy carriers on the nanoscale remains difficult due to extremely weak transient signals. Here, we present a method for ultrasensitive and high-throughput imaging of energy carrier evolution in space and time. This method combines femtosecond pump–probe techniques with interferometric scattering microscopy (iSCAT), named Femto-iSCAT. The interferometric principle and unique spatially modulated contrast enhancement enable the exploration of new science. We address three important and challenging problems: transport of different energy carriers at various interfaces, heterogeneous hot-electron distribution and relaxation in single plasmonic resonators, and distinct structure-dependent edge-state dynamics of carriers and excitons in optoelectronic semiconductors. Femto-iSCAT holds great potential as a universal tool for ultrasensitive imaging of energy carrier evolution in space and time.