American Chemical Society
Browse

Coassembly of Short Peptide and Polyoxometalate into Complex Coacervate Adapted for pH and Metal Ion-Triggered Underwater Adhesion

Download (4.97 MB)
media
posted on 2019-03-20, 00:00 authored by Xiangyi Li, Tingting Zheng, Xiaohuan Liu, Zhanglei Du, Xiaoming Xie, Bao Li, Lixin Wu, Wen Li
The fabrication of peptide assemblies to mimic the functions of natural proteins represents an intriguing aim in the fields of soft materials. Herein, we present a kind of novel peptide-based adhesive coacervate for the exploration of the environment-responsive underwater adhesion. Adhesive coacervates are designed and synthesized by self-assembled condensation of a tripeptide and polyoxometalates in aqueous solution. Rheological measurements demonstrate that the adhesive coacervates exhibit shear thinning behavior, which allows them to be conveniently delivered for interfacial spreading through a narrow gauge syringe without high pressure. The complex coacervates are susceptible to pH and metal ions, resulting in the occurrence of a phase transition from the fluid phase to the gel state. Scanning electron microscopy demonstrates that the microscale structures of the gel-like phases are composed of interconnected three-dimensional porous networks. The rheological study reveals that the gel-like assemblies exhibited mechanical stiffness and self-healing properties. Interestingly, the gel-like samples show the capacity to adhere to various wet solid substrates under the waterline. The adhesion strength of the peptide-based gel is quantified by lap shear mechanical analysis. The fluid coacervate is further exploited in the preparation of “on-site” injectable underwater adhesives triggered by environmental factors. This finding is exciting and serves to expand our capability for the fabrication of peptide-based underwater adhesives in a controllable way.

History