am8b02081_si_006.avi (5.17 MB)
Download file

Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil–Water Separation

Download (5.17 MB)
media
posted on 03.04.2018, 12:41 authored by Yong-Gang Zhang, Ying-Jie Zhu, Zhi-Chao Xiong, Jin Wu, Feng Chen
Inorganic aerogels have been attracting great interest owing to their distinctive structures and properties. However, the practical applications of inorganic aerogels are greatly restricted by their high brittleness and high fabrication cost. Herein, inspired by the cancellous bone, we have developed a novel kind of hydroxyapatite (HAP) nanowire-based inorganic aerogel with excellent elasticity, which is highly porous (porosity ≈ 99.7%), ultralight (density 8.54 mg/cm3, which is about 0.854% of water density), and highly adiabatic (thermal conductivity 0.0387 W/m·K). Significantly, the as-prepared HAP nanowire aerogel can be used as the highly efficient air filter with high PM2.5 filtration efficiency. In addition, the HAP nanowire aerogel is also an ideal candidate for continuous oil–water separation, which can be used as a smart switch to separate oil from water continuously. Compared with organic aerogels, the as-prepared HAP nanowire aerogel is biocompatible, environmentally friendly, and low-cost. Moreover, the synthetic method reported in this work can be scaled up for large-scale production of HAP nanowires, free from the use of organic solvents. Therefore, the as-prepared new kind of HAP nanowire aerogel is promising for the applications in various fields.

History