American Chemical Society
Browse
ab3c00710_si_001.mp4 (35.52 MB)

A Soft Capsule for Magnetically Driven Drug Delivery Based on a Hard-Magnetic Elastomer Foam

Download (35.52 MB)
media
posted on 2023-08-01, 19:14 authored by Xiao Sun, Pan Zhang, Zi Ye, Lei Li, Qian Li, Huimin Zhang, Bingxin Liu, Lin Gui
Drug delivery systems based on porous soft biomaterials have been widely reported because of stimuli-responsive drug release and their inherent reservoirs for drug storage. Especially, magnetic-responsive porous soft biomaterials achieve rapid and real-time control of drug release due to the magnetic field-triggered large deformation. However, the drug release profiles of these materials are difficult to predict and repeat, which restrict them from releasing drugs in the required dosage. Here, we report a soft capsule based on a flexible hard-magnetic elastomer foam (HEF) for magnetically controlled on-demand drug delivery. The HEF capsule contains an inner HEF and an outer elastomer shell. The HEF exhibits low elastic modulus (10 kPa) and highly interconnected pores (81% interconnected pores). Benefitting from the novel precompressed magnetization, the compressive deformation of HEF reaches 66%. Thus, an adjustable drug release rate ranging from 0.02 to 1.7 mL/min in the HEF capsule is achieved. The deformation-triggered drug release profiles of the HEF capsule under the magnetic field are accurately predicted, allowing 85% accuracy in drug dosage regulation and more than 90% maximum cumulative drug release. Especially, the HEF capsule is proven capable of acting as a soft robot to perform magnetically driven drug delivery in a human stomach model. HEF can potentially serve as a soft robot for biomedical applications in the human body.

History