American Chemical Society
am7b19797_si_001.pdf (744.35 kB)

pH-Responsive Magnetic Mesoporous Silica-Based Nanoplatform for Synergistic Photodynamic Therapy/Chemotherapy

Download (744.35 kB)
journal contribution
posted on 2018-04-12, 00:00 authored by Xiang-long Tang, Feng Jing, Ben-lan Lin, Sheng Cui, Ru-tong Yu, Xiao-dong Shen, Ting-wei Wang
By overcoming drug resistance and subsequently enhancing the treatment, the combination therapy of photodynamic therapy (PDT) and chemotherapy has promising potential for cancer treatment. However, the major challenge is how to establish an advanced nanoplatform that can be efficiently guided to tumor sites and can then stably release both chemotherapy drugs and a photosensitizer simultaneously and precisely. In this study, which considered the possibility and targeting efficiency of a magnetic targeting strategy, a novel Fe3O4@mSiO2(DOX)@HSA­(Ce6) nanoplatform was successfully built; this platform could be employed as an efficient synergistic antitumor nanoplatform with magnetic guidance for highly specific targeting and retention. Doxorubicin (DOX) molecules were loaded into mesoporous silica with high loading capability, and the mesoporous channels were blocked by a polydopamine coating. Human serum albumin (HSA) was conjugated to the outer surface to increase the biocompatibility and blood circulation time, as well as to provide a vehicle for loading photosensitizer chlorin e6 (Ce6). The sustained release of DOX under acidic conditions and the PDT induced by red light exerted a synergistic inhibitory effect on glioma cells. Our experiments demonstrated that the pH-responsive Fe3O4@mSiO2(DOX)@HSA­(Ce6) nanoplatform was guided to the tumor region by magnetic targeting and that the nanoplatform suppressed glioma tumor growth efficiently, implying that the system is a highly promising photodynamic therapy/chemotherapy combination nanoplatform with synergistic effects for cancer treatment.