American Chemical Society
bc1c00263_si_001.pdf (961.23 kB)

211At-Labeled Polymer Nanoparticles for Targeted Radionuclide Therapy of Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR)-Overexpressed Cancer

Download (961.23 kB)
journal contribution
posted on 2021-07-14, 22:13 authored by Xiumin Shi, Qing Li, Lulu Zhang, Masayuki Hanyu, Lin Xie, Kuan Hu, Kotaro Nagatsu, Chuan Zhang, Zhengcan Wu, Feng Wang, Ming-Rong Zhang, Kai Yang, Ran Zhu
Targeted radionuclide therapy (TRT) provides new and safe opportunities for cancer treatment and management with high precision and efficiency. Here we have designed a novel semiconducting polymer nanoparticle (SPN)-based radiopharmaceutical (211At-MeATE-SPN-GIP) for TRT against glucose-dependent insulinotropic polypeptide receptor (GIPR)-positive cancers to further explore the applications of nanoengineered TRT. 211At-MeATE-SPN-GIP was engineered via nanoprecipitation, followed by its functionalization with a glucose-dependent insulinotropic polypeptide (GIP) to target GIPR and deliver 211At for α therapy. The therapeutic effect and biological safety of 211At-MeATE-SPN-GIP were investigated using GIPR-overexpressing human pancreatic cancer CFPAC-1 cells and CFPAC-1-bearing mice. In this work, 211At-MeATE-SPN-GIP was produced with a radiochemical yield of 43% and radiochemical purity of 98%, which exhibited a specifically high uptake in CFPAC-1 cells, inducing cell cycle arrest at the G2/M phase and extensive DNA damage. In the CFPAC-1-bearing tumor model, 211At-MeATE-SPN-GIP exhibited high therapeutic efficiency, with no obvious side effects. The GIPR-specific binding of 211At-MeATE-SPN-GIP combined with effective inhibition of tumor growth and fewer side effects compared to control suggests that 211At-MeATE-SPN-GIP TRT holds great potential as a novel nanoengineered TRT strategy for patients with GIPR-positive cancer.