American Chemical Society
Browse

Micro + Nano: Conserving the Gold Standard Microroughness to Nanoengineer Zirconium Dental Implants

Download (141.87 kB)
journal contribution
posted on 2021-06-15, 13:37 authored by Divya Chopra, Karan Gulati, Sašo Ivanovski
Zirconium has achieved popularity as a biomaterial for dental and orthopedic implants; however, its bioinertness can compromise implant-tissue integration, especially in compromised patient conditions. More recently, various nanoengineering strategies have been explored to enhance the bioactivity of Ti-based implants; however, nanoengineering of Zr-based implants has not been adequately explored. In this pioneering attempt, we report on the optimized fabrication of various nanostructures on microrough Zr surfaces and explore the influence of the underlying surface topography. In-depth optimization of electrochemical anodization (EA) is performed by tuning various parameters, including substrate topography, voltage/current and time, onto microrough (micromachined) and extremely rough Zr substrates, which represent clinically relevant implant surfaces. Variations of EA factors yielded various nanotopographies, including nanotubes, nanograss and nanotemplates, offering different topographical and chemical combinations. EA optimization and precise current–voltage recording was performed to arrive at clinically translatable and reproducible nanostructures on Zr surfaces. This study will pave the way toward the fabrication of the next generation of nanoengineered Zr-based orthopedic and dental implants.

History