American Chemical Society
Browse
jf3c08918_si_002.pdf (872.26 kB)

Kj-mhpC Enzyme in Klebsiella jilinsis 2N3 Is Involved in the Degradation of Chlorimuron-Ethyl via De-Esterification

Download (872.26 kB)
journal contribution
posted on 2024-02-28, 20:14 authored by Qianhang Zhai, Shuanglan Zheng, Cheng Zhang, Zhou Lu, Shuang Liang, Ranhong Li, Xianghui Zhang, Hongyu Pan, Hao Zhang
Microbial degradation is a highly efficient and reliable approach for mitigating the contamination of sulfonylurea herbicides, such as chlorimuron-ethyl, in soil and water. In this study, we aimed to assess whether Kj-mhpC plays a pivotal role in the degradation of chlorimuron-ethyl. Kj-mhpC enzyme purified via prokaryotic expression exhibited the highest catalytic activity for chlorimuron-ethyl at 35 °C and pH 7. Bioinformatic analysis and three-dimensional homologous modeling of Kj-mhpC were conducted. Additionally, the presence of Mg+ and Cu2+ ions partially inhibited but Pb2+ ions completely inhibited the enzymatic activity of Kj-mhpC. LC/MS revealed that Kj-mhpC hydrolyzes the ester bond of chlorimuron-ethyl, resulting in the formation of 2-(4-chloro-6-methoxypyrimidine-2-amidoformamidesulfonyl) benzoic acid. Furthermore, the point mutation of serine at position 67 (Ser67) confirmed that it is the key amino acid at the active site for degrading chlorimuron-ethyl. This study enhanced the understanding of how chlorimuron-ethyl is degraded by microorganisms and provided a reference for bioremediation of the environment polluted with chlorimuron-ethyl.

History