American Chemical Society
Browse

Helicobacter pylori and Alzheimer’s Disease-Related Metabolic Dysfunction: Activation of TLR4/Myd88 Inflammation Pathway from p53 Perspective and a Case Study of Low-Dose Radiation Intervention

Download (1.3 MB)
journal contribution
posted on 2022-03-21, 20:14 authored by Zhao Ju, Liangfang Shen, Meiling Zhou, Jinhua Luo, Zijian Yu, Can Qu, Ridan Lei, Mingjun Lei, Ruixue Huang
Gut dysbiosis is observed in Alzheimer’s disease (AD) and is frequently associated with AD-induced metabolic dysfunction. However, the extent and specific underlying molecular mechanisms triggered by alterations of gut microbiota composition and function mediating AD-induced metabolic dysfunction in AD remain incompletely uncovered. Here, we indicate that Helicobacter pylori (H. pylori) is abundant in AD patients with relative metabolic dysfunction. Fecal microbiota transplantation from the AD patients promoted metabolic dysfunction in mice and increased gut permeability. H. pylori increased gut permeability through activation of the TLR4/Myd88 inflammation pathway in a p53-dependent manner, leading to metabolic dysfunction. Moreover, p53 deficiency reduced bile acid concentration, leading to an increased abundance of H. pylori colonization. Overall, these data identify H. pylori as a key promoter of AD-induced metabolic dysfunction.

History