bm5b01582_si_001.pdf (2.27 MB)

“Graft-to” Protein/Polymer Conjugates Using Polynorbornene Block Copolymers

Download (2.27 MB)
journal contribution
posted on 08.02.2016, 00:00 by Sergey A. Isarov, Parker W. Lee, Jonathan K. Pokorski
A series of water-soluble polynorbornene block copolymers prepared via Ring-Opening Metathesis Polymerization (ROMP) were grafted to proteins to form ROMP-derived bioconjugates. ROMP afforded low-dispersity polymers and allowed for strict control over polymer molecular weight and architecture. The polymers consisted of a large block of PEGylated monoester norbornene and were capped with a short block of norbornene dicarboxylic anhydride. This cap served as a reactive linker that facilitated attachment of the polymer to lysine residues under mildly alkaline conditions. The generality of this approach was shown by synthesizing multivalent polynorbornene-modified viral nanoparticles derived from bacteriophage Qβ, a protein nanoparticle used extensively for nanomedicine. The conjugated nanoparticles showed no cytotoxicity to NIH 3T3 murine fibroblast cells. These findings establish protein bioconjugation with functionalized polynorbornenes as an effective alternative to conventional protein/polymer modification strategies and further expand the toolbox for protein bioconjugates.