am400519m_si_001.pdf (1.84 MB)

Zwitterionic Phenyl Layers: Finally, Stable, Anti-Biofouling Coatings that Do Not Passivate Electrodes

Download (1.84 MB)
journal contribution
posted on 12.06.2013, 00:00 by Alicia L. Gui, Erwann Luais, Joshua R. Peterson, J. Justin Gooding
Organic coatings on electrodes that limit biofouling by proteins but are of sufficiently low impedance to still allow Faradaic electrochemistry to proceed at the underlying electrode are described for the first time. These organic coatings formed using simple aryl diazonium salts present a zwitterionic surface and exhibit good electrochemical stability. The layers represent a low impedance alternative to the oligo (ethylene glycol) (OEG)-based anti-biofouling coatings and are expected to find applications in electrochemical biosensors and implantable electrodes. Two different zwitterionic layers grafted to glassy carbon surfaces are presented and compared to a number of better-known surfaces, including OEG-based phenyl-layer-grafted glassy carbon surfaces and OEG alkanethiol SAMs coated on gold, to allow the performance of these new layers to be compared to the body of work on other anti-biofouling surfaces. The results suggest that phenyl-based zwitterionic coatings are as effective as the OEG SAMs at resisting the nonspecific adsorption of bovine serum albumin and cytochrome c, as representative anionic and cationic proteins at physiological pH, whereas the impedance of the zwitterionic phenyl layers are two orders of magnitude lower than OEG SAMs.