American Chemical Society
am1c18604_si_001.pdf (3.49 MB)

Wide-Gamut Biomimetic Structural Colors from Interference-Assisted Two-Photon Polymerization

Download (3.49 MB)
journal contribution
posted on 2021-12-09, 14:18 authored by Hongcheng Gu, Xiaojiang Liu, Zhongde Mu, Qiong Wang, Haibo Ding, Xin Du, Zhongze Gu
Two-photon polymerization (TPP) is an emerging direct laser writing technique for the fabrication of structural colors. However, its coloration ability is suppressed as the vertical resolution is up to several microns. To solve this issue, an interference-assisted TPP technique was employed. Laser interference at a highly reflective interface produced the periodic energy redistribution along the vertical direction, turning the laser voxel into multilayer structures and confirming this technology as a facile and robust method for precise control of its vertical feature size. Biomimetic structural colors (BSCs) inspired from the ridge-lamella configurations in the Morph butterflies were fabricated using this improved TPP technique. The coloration mechanisms of the multilayer interference from the lamella layers, the thin-film interference from the fusion of multilayers, and the hybrid situations were systematically studied. These BSC colors were grouped as pixel palettes with various TPP parameters corresponding to each other, and they spanned almost the entire standard red–green–blue color space. Moreover, under optimized conditions, it was possible to fabricate a 1 cm2 area within 2.5 h. These features make interference-assisted TPP an ideal coloration method for practical applications, such as display, decoration, sensing, and so on.