American Chemical Society
ao1c06785_si_001.pdf (342.83 kB)

Waste Passion Fruit Peel as a Heterogeneous Catalyst for Room-Temperature Biodiesel Production

Download (342.83 kB)
journal contribution
posted on 2022-02-23, 18:10 authored by Juliati Br. Tarigan, Krishanjit Singh, Jenita S. Sinuraya, Minto Supeno, Helmina Sembiring, Kerista Tarigan, Siti Masriani Rambe, Justaman A. Karo-karo, Eko K. Sitepu
A low-cost, green, and highly active catalyst which could transesterify oil under ambient conditions is required to reduce the biodiesel production cost. A novel heterogeneous catalyst derived from the waste agroproduct has been developed from passion fruit peel. The catalytic activity of calcined waste passion fruit peel (WPFP) which mainly contains potassium in the form of chloride and carbonate has been evaluated using factorial design to determine the interaction of molar ratio of oil to methanol, catalyst weight, and reaction time with three different reaction conditions such as 65, 45 °C, and room temperature. The transesterification of palm oil to biodiesel achieved a conversion of >90% for all variables determined at a reaction temperature of 45 and 65 °C, respectively, while a maximum biodiesel conversion of 95.4 ± 2.8% was obtained at room temperature and a reaction time of 30 min. The addition of certain amounts of the catalyst is required to reuse the catalyst as the leaching study showed the reduction of 22% of catalyst weight. The ability of calcined WPFP to catalyze transesterification at room temperature opens up the possibility to reduce biodiesel production cost.