jp6b05605_si_001.pdf (729.6 kB)

Vibrational Signatures of Conformer-Specific Intramolecular Interactions in Protonated Tryptophan

Download (729.6 kB)
journal contribution
posted on 28.06.2016, 00:00 by Aleksandr Y. Pereverzev, Xiaolu Cheng, Natalia S. Nagornova, Diana L. Reese, Ryan P. Steele, Oleg V. Boyarkin
Because of both experimental and computational challenges, protonated tryptophan has remained the last aromatic amino acid for which the intrinsic structures of low-energy conformers have not been unambiguously solved. The IR–IR–UV hole-burning spectroscopy technique has been applied to overcome the limitations of the commonly used IR–UV double resonance technique and to measure conformer-specific vibrational spectra of TrpH+, cooled to T = 10 K. Anharmonic ab initio vibrational spectroscopy simulations unambiguously assign the dominant conformers to the two lowest-energy geometries from benchmark coupled-cluster structure computations. The match between experimental and ab initio spectra provides an unbiased validation of the calculated structures of the two experimentally observed conformers of this benchmark ion. Furthermore, the vibrational spectra provide conformer-specific signatures of the stabilizing interactions, including hydrogen bonding and an intramolecular cation-π interaction.