American Chemical Society
nl403419e_si_001.pdf (1.14 MB)
Download file

Variation of Protein Corona Composition of Gold Nanoparticles Following Plasmonic Heating

Download (1.14 MB)
journal contribution
posted on 2014-01-08, 00:00 authored by Morteza Mahmoudi, Samuel E. Lohse, Catherine J. Murphy, Arman Fathizadeh, Abbas Montazeri, Kenneth S. Suslick
It is well recognized that the primary interaction of most biological environments with nanoparticles (NPs) is strongly influenced by a long-lived (“hard”) protein corona that surrounds the NP and remains strongly adsorbed to its surface. The amount and composition of associated proteins in the corona adsorbed onto the NPs is related to several important factors, including the physicochemical properties of the NPs and the composition of the protein solution. Here, for the first time, it is shown that plasmonic heat induction (by laser activation) leads to significant changes in the composition of the hard protein corona adsorbed on low aspect ratio gold nanorods. Using mass spectrometry, several proteins in the corona were identified whose concentrations change most substantially as a result of photoinduced (plasmonic) heating versus simple thermal heating. Molecular modeling suggests that the origin of these changes in protein adsorption may be the result of protein conformational changes in response to much higher local temperatures that occur near the gold nanorods during photoinduced, plasmonic heating. These results may define new applications in vivo for NPs with hyperthermia capability and better define the likely interactions of cells with NPs after plasmonic heating. Potential changes in the protein corona following hyperthermia treatment may influence the final biological fate of plasmonic NPs in clinical applications and help elucidate safety considerations for hyperthermia applications.