American Chemical Society
Browse

Valley Polarized Holes Induced Exciton Polaron Valley Splitting

Download (1.17 MB)
journal contribution
posted on 2023-08-01, 18:03 authored by Yueh-Chun Wu, Takashi Taniguchi, Kenji Watanabe, Jun Yan
Monolayer transition metal dichalcogenide semiconductors are promising valleytronic materials. Among various quasi-particle excitations hosted by the system, the valley polarized holes are particularly interesting due to their long valley lifetime preserved by the large spin–orbit splitting and spin–valley locking in the valence band. Here we report that in the absence of any magnetic field a surprising valley splitting of exciton polarons can be induced by such valley polarized holes in monolayer WSe2. The size of the splitting is comparable to that of the Zeeman effect in a magnetic field as high as 7 T and offers a quantitative approach to extract the hole density imbalance between the two valleys. We find that the density difference can easily achieve more than 1011 per cm2, and it is tunable by gate voltage as well as optical excitation power. Our study highlights the response of exciton polarons to optical pumping and advances understanding of valley dependent phenomena in monolayer transition metal dichalcogenide.

History