American Chemical Society
Browse
ja0c01173_si_001.pdf (2.19 MB)

Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N‑Carboxyanhydrides

Download (2.19 MB)
journal contribution
posted on 2020-05-01, 15:12 authored by Shixian Lv, Hojun Kim, Ziyuan Song, Lin Feng, Yingfeng Yang, Ryan Baumgartner, Kuan-Ying Tseng, Shen J. Dillon, Cecilia Leal, Lichen Yin, Jianjun Cheng
Polypeptide micelles are widely used as biocompatible nanoplatforms but often suffer from their poor structural stability. Unimolecular polypeptide micelles can effectively address the structure instability issue, but their synthesis with uniform structure and well-controlled and desired sizes remains challenging. Herein we report the convenient preparation of spherical unimolecular micelles through dendritic polyamine-initiated ultrafast ring-opening polymerization of N-carboxyanhydrides (NCAs). Synthetic polypeptides with exceptionally high molecular weights (up to 85 MDa) and low dispersity (Đ < 1.05) can be readily obtained, which are the biggest synthetic polypeptides ever reported. The degree of polymerization was controlled in a vast range (25–3200), giving access to nearly monodisperse unimolecular micelles with predictable sizes. Many NCA monomers can be polymerized using this ultrafast polymerization method, which enables the incorporation of various structural and functional moieties into the unimolecular micelles. Because of the simplicity of the synthesis and superior control over the structure, the unimolecular polypeptide micelles may find applications in nanomedicine, supermolecular chemistry, and bionanotechnology.

History