American Chemical Society
cm3c01448_si_004.pdf (856.57 kB)

Understanding the Formation Mechanisms of Silicon Particles from the Thermal Disproportionation of Hydrogen Silsesquioxane

Download (856.57 kB)
journal contribution
posted on 2023-10-12, 00:05 authored by Cynthia Cibaka-Ndaya, Kevin O’Connor, Emmanuel Opeyemi Idowu, Megan A. Parker, Eric Lebraud, Sabrina Lacomme, David Montero, Paula Sanz Camacho, Jonathan G.-C. Veinot, Ioan-Lucian Roiban, Glenna L. Drisko
Crystalline silicon particles sustaining Mie resonances are readily obtained from the thermal processing of hydrogen silsesquioxane (HSQ). Here, the mechanisms involved in silicon particle formation and growth from HSQ are investigated through real-time in situ analysis using an environmental transmission electron microscope and X-ray diffractometer. The nucleation of Si nanodomains is observed starting around 1000 °C. For the first time, a highly mobile intermediate phase is experimentally observed, thus demonstrating a previously unknown growth mechanism. At least two growth processes occur simultaneously: the coalescence of small particles into larger particles and growth mode by particle displacement through the matrix toward the HSQ grain surface. Postsynthetic characterization by scanning electron microscopy further supports the latter growth mechanism. The gaseous environment employed during synthesis impacts particle formation and growth under both in situ and ex situ conditions, impacting the particle yield and structural homogeneity. Understanding the formation mechanisms of particles provides promising pathways for reducing the energy cost of this synthetic route.