American Chemical Society
jp3c06900_si_001.pdf (2.14 MB)

Uncovering New Conformational States of the Substrate Binding Pocket of LSD1 Potential for Inhibitor Design via Funnel Metadynamics

Download (2.14 MB)
journal contribution
posted on 2023-12-28, 03:06 authored by Kecheng Yang, Hongmin Liu
Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target for cancer therapy. So far, over 80 crystal structures of LSD1 in different complex states have been deposited in the Protein Data Bank, which are valuable resources for performing structure-based drug design. However, among all of the crystal structures of LSD1, the substrate binding pocket, which is the most efficient druggable site for designing LSD1 inhibitors at present, is very similar no matter whether LSD1 is in the apo or any holo forms, which is inconsistent with its versatile demethylase functions. To investigate whether the substrate binding pocket is rigid or exhibits other representative conformations different from the crystal conformations that are feasible for designing new LSD1 inhibitors, we performed funnel metadynamics simulations to study the conformation dynamics of LSD1 in the binding process of two effective LSD1 inhibitors (CC-90011 and 6X0, CC-90011 undergoing clinical trials). Our results showed that the entrance of the substrate binding pocket is very flexible. Two representative entrance conformations of LSD1 counting against binding with the substrate of histone H3 were detected, which may be used for structure-based LSD1 inhibitor design. Besides, alternative optimal binding modes and prebinding modes for both inhibitors were also detected, which depicted that the key interactions changed along with the binding process. Our results should provide great help for LSD1 inhibitor design.