American Chemical Society
Browse
nl0c04426_si_001.pdf (17.06 MB)

Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs

Download (17.06 MB)
journal contribution
posted on 2021-01-25, 20:10 authored by Hepi H. Susapto, Dana Alhattab, Sherin Abdelrahman, Zainab Khan, Salwa Alshehri, Kowther Kahin, Rui Ge, Manola Moretti, Abdul-Hamid Emwas, Charlotte A. E. Hauser
We report about rationally designed ultrashort peptide bioinks, overcoming severe limitations in current bioprinting procedures. Bioprinting is increasingly relevant in tissue engineering, regenerative and personalized medicine due to its ability to fabricate complex tissue scaffolds through an automated deposition process. Printing stable large-scale constructs with high shape fidelity and enabling long-term cell survival are major challenges that most existing bioinks are unable to solve. Additionally, they require chemical or UV-cross-linking for the structure-solidifying process which compromises the encapsulated cells, resulting in restricted structure complexity and low cell viability. Using ultrashort peptide bioinks as ideal bodylike but synthetic material, we demonstrate an instant solidifying cell-embedding printing process via a sophisticated extrusion procedure under true physiological conditions and at cost-effective low bioink concentrations. Our printed large-scale cell constructs and the chondrogenic differentiation of printed mesenchymal stem cells point to the strong potential of the peptide bioinks for automated complex tissue fabrication.

History