la4027305_si_001.pdf (586.72 kB)

Ultrahigh Magnetically Responsive Microplatelets with Tunable Fluorescence Emission

Download (586.72 kB)
journal contribution
posted on 26.11.2013, 00:00 by Rafael Libanori, Frieder B. Reusch, Randall M. Erb, André R. Studart
Tuning the optical properties of suspensions by controlling the orientation and spatial distribution of suspended particles with magnetic fields is an interesting approach to creating magnetically controlled displays, microrheology sensors, and materials with tunable light emission. However, the relatively high concentration of magnetic material required to manipulate these particles very often reduces the optical transmittance of the system. In this study, we describe a simple method of generating particles with magnetically tunable optical properties via sol–gel deposition and functionalization of a continuous layer of silica on ultrahigh magnetically responsive (UHMR) alumina microplatelets. UHMR microplatelets with tunable magnetic response in the range of 15–36 G are obtained by the electrostatic adsorption of 2 to 13% of superparamagnetic iron oxide nanoparticles (SPIONs) on the alumina surface. The magnetized platelets are coated with a 20–50 nm layer of SiO2 through the controlled hydrolysis and condensation reactions of tetraethylorthosilicate (TEOS) in an NH3/ethanol mixture. Finally, the silica surface is covalently modified with an organic fluorescent dye by conventional silane chemistry. Because of the anisotropic shape of the particles, control of their orientation and distribution using magnetic fields and field gradients enables easy tuning of the optical properties of the suspension. This strategy allows us to gain both spatial and temporal control over the fluorescence emission from the particle surface, making the multifunctional platelets interesting building blocks for the manipulation of light in colloid-based smart optical devices and sensors.

History

Exports