jf0c07831_si_001.pdf (654.11 kB)

Tripeptide IRW Upregulates NAMPT Protein Levels in Cells and Obese C57BL/6J Mice

Download (654.11 kB)
journal contribution
posted on 01.02.2021, 14:38 by Khushwant S. Bhullar, Myoungjin Son, Evan Kerek, Christopher R. Cromwell, Bentley M. Wingert, Kaiyu Wu, Juan Jovel, Carlos J. Camacho, Basil P. Hubbard, Jianping Wu
Nicotinamide adenine dinucleotide (NAD+) plays a vital role in cellular processes that govern human health and disease. Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in NAD+ biosynthesis. Thus, boosting NAD+ level via an increase in NAMPT levels is an attractive approach for countering the effects of aging and metabolic disease. This study aimed to establish IRW (Ile-Arg-Trp), a small tripeptide derived from ovotransferrin, as a booster of NAMPT levels. Treatment of muscle (L6) cells with IRW increased intracellular NAMPT protein levels (2.2-fold, p < 0.05) and boosted NAD+ (p < 0.01). Both immunoprecipitation and recombinant NAMPT assays indicated the possible NAMPT-activating ability of IRW (p < 0.01). Similarly, IRW increased NAMPT mRNA and protein levels in the liver (2.6-fold, p < 0.01) and muscle tissues (2.3-fold, p < 0.05) of C57BL/6J mice fed with a high-fat diet (HFD). A significantly increased level of circulating NAD+ was also observed following IRW treatment (4.7 fold, p < 0.0001). Dosing of Drosophila melanogaster with IRW elevated both D-NAAM (fly NAMPT) and NAD+ in vivo (p < 0.05). However, IRW treatment did not boost NAMPT levels in SIRT1 KO cells, indicating a possible SIRT1 dependency for the pharmacological effect. Overall, these data indicate that IRW is a novel small peptide booster of the NAMPT pool.

History

Exports