om8b00132_si_001.pdf (1.11 MB)
Download fileTransfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts
journal contribution
posted on 2018-04-23, 18:20 authored by Feng Chen, Isolda Romero-Canelón, Joan J. Soldevila-Barreda, Ji-Inn Song, James P. C. Coverdale, Guy J. Clarkson, Jana Kasparkova, Abraha Habtemariam, Martin Wills, Viktor Brabec, Peter J. SadlerWe report the synthesis
and characterization of four neutral organometallic
tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl
(Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl
(Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit
moderate antiproliferative activity toward human ovarian, lung, hepatocellular,
and breast cancer cell lines. Complex 2 in particular
exhibits a low cross-resistance with cisplatin. The complexes show
potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution
(310 K, pH 7). Substituents on the chelated ligand decreased the turnover
frequency in the order Nb > Tf > Ts > Ms. An enhancement
of antiproliferative
activity (up to 22%) was observed on coadministration with nontoxic
concentrations of sodium formate (0.5–2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not
to be the target, as little binding to calf thymus DNA or bacterial
plasmid DNA was observed. In addition, complex 2 reacts
rapidly with glutathione (GSH), which might hamper transfer hydrogenation
reactions in cells. Complex 2 induced a dose-dependent
G1 cell cycle arrest after 24 h exposure in A2780 human
ovarian cancer cells while promoting an increase in reactive oxygen
species (ROS), which is likely to contribute to its antiproliferative
activity.