Toward a Low-Barrier Transition-Metal-Free Catalysis of Hydrogenation Reactions: A
Theoretical Mechanistic Study of HAlX4-Catalyzed Hydrogenations of Ethene (X = F, Cl,
and Br)
posted on 2000-07-18, 00:00authored byStefan Senger, Leo Radom
Ab initio molecular orbital theory at the MP2/6-311+G(3df,2p)//B3-LYP/6-31G(d) level has been used to
study the transition-metal-free catalysis of the hydrogenation of ethene. Catalysis by HX, (HX)2 and HAlX4
(X = F, Cl, and Br) has been examined. Both concerted pathways and stepwise pathways involving CH3CH2X-type intermediates have been characterized. The former are energetically preferred in the case of the
HX- and (HX)2-catalyzed reactions. However, for the HAlX4-catalyzed hydrogenations, concerted and stepwise
mechanisms are found to have similar barriers. The HAlX4 species are found to be very effective hydrogenation
catalysts, reducing the barrier for the hydrogenation of ethene from the value of 367 kJ mol-1 in the uncatalyzed
process to less than 100 kJ mol-1 for all the halogens (X).