am8b21569_si_001.pdf (776.77 kB)

Tough and Immunosuppressive Titanium-Infiltrated Exoskeleton Matrices for Long-Term Endoskeleton Repair

Download (776.77 kB)
journal contribution
posted on 28.01.2019, 00:00 by Seunghwan Choy, Dongyeop X. Oh, Seungwon Lee, Do Van Lam, Gihoon You, Jin-Soo Ahn, Seung-Woo Lee, Sang-Ho Jun, Seung-Mo Lee, Dong Soo Hwang
Although biodegradable membranes are essential for effective bone repair, severe loss of mechanical stability because of rapid biodegradation, soft tissue invasion, and excessive immune response remain intrinsically problematic. Inspired by the exoskeleton-reinforcing strategy found in nature, we have produced a Ti-infiltrated chitin nanofibrous membrane. The membrane employs vapor-phase infiltration of metals, which often occurs during metal oxide atomic layer deposition (ALD) on organic substrates. This metal infiltration manifests anomalous mechanical improvement and stable integration with chitin without cytotoxicity and immunogenicity. The membrane exhibits both impressive toughness (∼13.3 MJ·m–3) and high tensile strength (∼55.6 MPa), properties that are often mutually exclusive. More importantly, the membrane demonstrates notably enhanced resistance to biodegradation, remaining intact over the course of 12 weeks. It exhibits excellent osteointegrative performance and suppresses the immune response to pathogen-associated molecular pattern molecules indicated by IL-1β, IL-6, and granulocyte-macrophage colony-stimulating factor expression. We believe the excellent chemico-biological properties achieved with ALD treatment can provide insight for synergistic utilization of the polymers and ALD in medical applications.